STEM WITH WINGS

Whats next for Quantum?

Impact Report
Big Ideas | October 2025

Introduction

STEM with Wings is now in the second year of delivery, with **What's Next for Quantum?** being the first event of this programme cycle.

Delivered by Big Ideas in partnership with the RAF Youth STEM Programme, the event connected classrooms across the UK to the people and ideas driving innovation in the Quantum field.

Aimed at learners aged 7–14, the event showed that quantum physics is not an abstract mystery, but an exciting, accessible area of discovery that young people can be part of. Through expert discussion and classroom activities, pupils discovered how quantum principles underpin advances in computing, communication, and aviation.

Dr Jess Wade spoke at all four workshops and shared her expansive knowledge of the world of Quantum with students. Dr Wade is a Research Fellow and Lecturer at Imperial in London and is a hugely influential voice in Quantum technologies. Jess was joined by PhD students from Imperial Shey Lovett and Felix Burt who shared practical applications of quantum with students. Big Ideas would like to thank Imperial and QuEST, the Imperial College London's Centre for Quantum Engineering, Science and Technology for their support.

Dr Jess Wade, Research Fellow and Lecturer at Imperial

Guest speaker Shey Lovett, a PhD student studying quantum devices, showed students a quantum computer.

At a Glance

- 7231 pupils were registered for workshops
- 264 classes were signed up to attend
- 242 teachers from 120 schools across the UK took part in sessions
- 77 homeschooled children from 34 settings attended workshops
- Four differentiated workshops were held over two days (2 Primary / 2 Secondary)

"They enjoyed the opportunity to create something and think outside of the box."

Teacher Feedback

"It was great that there was an opportunity to discuss how engineering and science is used across a vast range of industries/contexts - a lot of these actually surprised the students. It was also brilliant that there was a conversation around gender, ethnicity, etc. to show that anyone can be an engineer or scientist, if they wish to be."

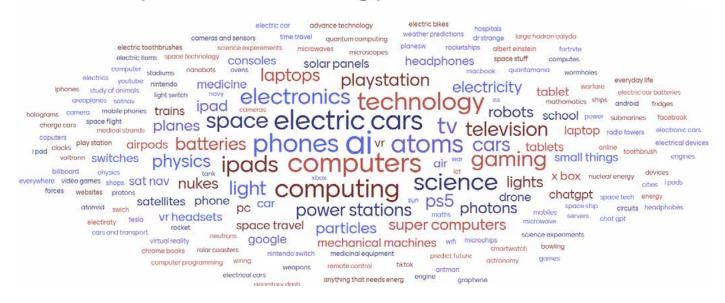
Teacher Feedback

Aims

The event was designed to:

- 1. Inspire young people to see themselves as future scientists and innovators.
- 2. Build curiosity and confidence through accessible engagement with quantum science.
- 3. Connect quantum concepts to real-world applications in computing and communication.
- 4. Support teachers in introducing new and emerging STEM topics in the classroom.

Guest Speaker Felix Burt, PhD student explains wave-particle duality to students


Event Highlights

What's Next for Quantum guided pupils through some of the biggest questions in modern science, how quantum mechanics underpins new technologies and why it matters for the future. Students did not have a great deal of proper knowledge of quantum, each event served as a platform for exploration with the expert hosts.

Through interactive challenges, polls, and live Q&A, students explored principles such as superposition and entanglement, seeing how these ideas drive breakthroughs in technology and problem-solving.

Where is quantum technology used?

The Dr Jess Wade and her colleagues shared their experiences from real-world research, illustrating how curiosity and creativity fuel innovation. Teachers praised the balance between explanation and exploration, noting how the session inspired curiosity and confidence among pupils of all abilities.

"It was fascinating! My pupils had so many questions (many of which I couldn't really answer!). The presentation by Dr Jess Wade was excellent and the whole thing was fast, and fun."

Teacher Feedback

National Reach

Participation spanned the UK, including schools from urban, rural, and coastal regions as well as home educated learners. The event reached:

- 5,820 pupils aged 7–11 from 89 primary schools, involving 182 teachers, 210 classes, and
- 1,411 pupils aged 11–14 from 31 secondary schools, involving 60 teachers, 54 classes, and
- 77 pupils from 34 home education settings

This breadth of participation demonstrates the effectiveness of the STEM with Wings model in bringing high-quality STEM engagement to diverse learning communities.

Impact

Teacher and participant feedback showed clear evidence of enjoyment, engagement, and increased awareness of STEM careers. The event successfully reached new audiences and made quantum science accessible to pupils who may not otherwise encounter it in school.

Where is quantum technology used?

```
power banks
profiled accelerations playstation
wires telescopes protections playstation
wires telescopes protections playstation
wires telescopes protections playstation
wires telescopes protections protections and guides
configurations
power panks
profiled accelerations playstation
protection protections
protection protections
```


Quantitative Teacher Feedback

Teacher and participant feedback showed clear evidence of enjoyment, engagement, and increased awareness of STEM careers. The event successfully reached new audiences and made quantum science accessible to pupils who may not otherwise encounter it in school.

- 100% of teachers said they would want to take part in future STEM Workshops with Big Ideas
- 76% of teachers said they were now more confident talking about engineering and science jobs and career pathways with their class
- 65.6% of pupils met a scientist or engineer for the first time
- 6.5% of teachers had participated in an RAF Youth STEM event before

"Jess - How easy was it for you to get into Quantum physics as a female?

Have you always been interested in STEM., even as a youngster?"

Student Question from Meadows Primary School

Teachers described the combination of expert voices, visual storytelling, and interactive tasks as a highly effective way to introduce advanced science concepts at age-appropriate levels. The live format allowed pupils to see real scientists explain complex ideas with clarity and enthusiasm, clarifying abstract principles. Many teachers noted that the session struck a rare balance between intellectual challenge and accessibility, capturing pupils' imaginations without overwhelming them. This blend of expert communication and participatory learning helped students not only to understand key scientific ideas but to feel genuine excitement about exploring them further.

"The concept itself is so fascinating with endless/unknown discoveries yet to come!"

Teacher Feedback

"The students were really engaged in the talk and loved the interactivity of it all too. The discussions we had with the students during and after were really insightful and they all mentioned how much they enjoyed it and would love to take part in another quantum science workshop. When they left, you could hear the positive impact it had on them and they were keen to tell their friends all about it."

Teacher Feedback

Recommendations

To build on this success, Big Ideas recommends:

- 1. Continuing the STEM with Wings series to explore other emerging technologies and scientific frontiers.
- 2. Providing follow-up classroom resources to help teachers embed learning.
- 3. Expanding interactive sessions with a wider range of scientists and engineers to deepen pupil engagement and inclusivity.
- 4. Tracking long-term outcomes to assess shifts in confidence and STEM career awareness.

Conclusion

STEM with Wings: What's Next for Quantum demonstrated the impact of creative, inclusive science communication. With 7,308 pupils taking part across over 150 schools and home education settings, the programme proved that even complex scientific ideas can be made engaging and relevant for young audiences.

With teachers reporting across the board that their students enjoyed the event, it clearly achieved its goal of sparking curiosity and confidence. For many pupils, it was their first time meeting a scientist or engineer, a crucial step in widening participation and building aspiration within STEM.

"Quantum physics explains the science of the very very small, the atoms, electrons and photons that make up everything around us."

Jessica Wade, Quantum Physicist

Find out more www.big-ideas.org